Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Environ Res Public Health ; 19(22)2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2143082

ABSTRACT

Appropriate prioritisation of geographic target regions (TRs) for healthcare interventions is critical to ensure the efficient distribution of finite healthcare resources. In delineating TRs, both 'targeting efficiency', i.e., the return on intervention investment, and logistical factors, e.g., the number of TRs, are important. However, existing approaches to delineate TRs disproportionately prioritise targeting efficiency. To address this, we explored the utility of a method found within conservation planning: the software Marxan and an extension, MinPatch ('Marxan + MinPatch'), with comparison to a new method we introduce: the Spatial Targeting Algorithm (STA). Using both simulated and real-world data, we demonstrate superior performance of the STA over Marxan + MinPatch, both with respect to targeting efficiency and with respect to adequate consideration of logistical factors. For example, by design, and unlike Marxan + MinPatch, the STA allows for user-specification of a desired number of TRs. More broadly, we find that, while Marxan + MinPatch does consider logistical factors, it also suffers from several limitations, including, but not limited to, the requirement to apply two separate software tools, which is burdensome. Given these results, we suggest that the STA could reasonably be applied to help prevent inefficiencies arising due to targeting of interventions using currently available approaches.


Subject(s)
Conservation of Natural Resources , Health Facilities , Conservation of Natural Resources/methods , Delivery of Health Care
2.
BMC Med ; 20(1): 80, 2022 02 18.
Article in English | MEDLINE | ID: covidwho-1690913

ABSTRACT

BACKGROUND: In countries with high COVID-19 vaccination rates the SARS-CoV-2 Delta variant resulted in rapidly increasing case numbers. This study evaluated the use of non-pharmaceutical interventions (NPIs) coupled with alternative vaccination strategies to determine feasible Delta mitigation strategies for Australia. We aimed to understand the potential effectiveness of high vaccine coverage levels together with NPI physical distancing activation and to establish the benefit of adding children and adolescents to the vaccination program. Border closure limited SARS-CoV-2 transmission in Australia; however, slow vaccination uptake resulted in Delta outbreaks in the two largest cities and may continue as international travel increases. METHODS: An agent-based model was used to evaluate the potential reduction in the COVID-19 health burden resulting from alternative vaccination strategies. We assumed immunity was derived from vaccination with the BNT162b2 Pfizer BioNTech vaccine. Two age-specific vaccination strategies were evaluated, ages 5 and above, and 12 and above, and the health burden determined under alternative vaccine coverages, with/without activation of NPIs. Age-specific infections generated by the model, together with recent UK data, permitted reductions in the health burden to be quantified. RESULTS: Cases, hospitalisations and deaths are shown to reduce by (i) increasing coverage to include children aged 5 to 11 years, (ii) activating moderate NPI measures and/or (iii) increasing coverage levels above 80%. At 80% coverage, vaccinating ages 12 and above without NPIs is predicted to result in 1095 additional hospitalisations per million population; adding ages 5 and above reduces this to 996 per million population. Activating moderate NPIs reduces hospitalisations to 611 for ages 12 and over, and 382 per million for ages 5 and above. Alternatively, increasing coverage to 90% for those aged 12 and above is estimated to reduce hospitalisations to 616. Combining all three measures is shown to reduce cases to 158, hospitalisations to 1 and deaths to zero, per million population. CONCLUSIONS: Delta variant outbreaks may be managed by vaccine coverage rates higher than 80% and activation of moderate NPI measures, preventing healthcare facilities from being overwhelmed. If 90% coverage cannot be achieved, including young children and adolescents in the vaccination program coupled with activation of moderate NPIs appears necessary to suppress future COVID-19 Delta-like transmission and prevent intensive care unit surge capacity from being exceeded.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Australia/epidemiology , BNT162 Vaccine , COVID-19 Vaccines , Child , Child, Preschool , Cost of Illness , Humans , Vaccination
3.
Sci Rep ; 11(1): 11958, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1260950

ABSTRACT

There is a significant challenge in responding to second waves of COVID-19 cases, with governments being hesitant in introducing hard lockdown measures given the resulting economic impact. In addition, rising case numbers reflect an increase in coronavirus transmission some time previously, so timing of response measures is highly important. Australia experienced a second wave from June 2020 onwards, confined to greater Melbourne, with initial social distancing measures failing to reduce rapidly increasing case numbers. We conducted a detailed analysis of this outbreak, together with an evaluation of the effectiveness of alternative response strategies, to provide guidance to countries experiencing second waves of SARS-Cov-2 transmission. An individual-based transmission model was used to (1) describe a second-wave COVID-19 epidemic in Australia; (2) evaluate the impact of lockdown strategies used; and (3) evaluate effectiveness of alternative mitigation strategies. The model was calibrated using daily diagnosed case data prior to lockdown. Specific social distancing interventions were modelled by adjusting person-to-person contacts in mixing locations. Modelling earlier activation of lockdown measures are predicted to reduce total case numbers by more than 50%. Epidemic peaks and duration of the second wave were also shown to reduce. Our results suggest that activating lockdown measures when second-wave case numbers first indicated exponential growth, would have been highly effective in reducing COVID-19 cases. The model was shown to realistically predict the epidemic growth rate under the social distancing measures applied, validating the methods applied. The timing of social distancing activation is shown to be critical to their effectiveness. Data showing exponential rise in cases, doubling every 7-10 days, can be used to trigger early lockdown measures. Such measures are shown to be necessary to reduce daily and total case numbers, and the consequential health burden, so preventing health care facilities being overwhelmed. Early control of second wave resurgence potentially permits strict lockdown measures to be eased earlier.


Subject(s)
COVID-19/diagnosis , Communicable Disease Control , Disease Outbreaks/prevention & control , SARS-CoV-2/pathogenicity , Australia , COVID-19/therapy , COVID-19/virology , Communicable Disease Control/methods , Epidemics , Humans , Physical Distancing
SELECTION OF CITATIONS
SEARCH DETAIL